
Social Science and Humanities Journal, Vol. 09, Issue. 01, Page no: 6401-6409 

DOI: https://doi.org/10.18535/sshj.v9i01.1461                                               Page | 6401 

Assessing the performance of different variations of ensembled tree 

models in chlorophyll concentration prediction 

Nelsona,1 | Jimmy Tjenb,2 | Genrawan Hoendartoc,3  

1,2,3Deparment of Informatics, Universitas Widya Dharma Pontianak, Indonesia, 78117 
anelsonnelson41314@proton.me, bgenrawan@widyadharma.ac.id,  cjimmy.tjen@mathmods.eu

Abstract: 

Severe microalgae blooming is detrimental towards human life and the aquatic ecosystem in which it is 

blooming uncontrollably in. Chlorophyll concentration is a common parameter used to predict microalgal 

bloom. In this study, a variety of ensembled tree models which consists of random forest, gradient boosting 

frameworks, specifically XGBoost and LightGBM, and extra trees were implemented to predict amounts of 

chlorophyll concentration that can be found in running water. A comparison was also made between the 

models to find which performs the best in prediction and computational time. The comparison was conducted 

by comparing the NRMSE of each model and the average computing time. Each of the model’s 

hyperparameters has been tuned with the help of random search, as a method for hyper-parameter 

optimization. The results were as such: random forest took 16.95 ms to compute and the result of the NRMSE 

was 0.75, XGBoost took 8.28 ms to compute and the result of the NRMSE was 0.71, LightGBM took 2.81 ms 

to compute and the result of the NRMSE was 0.63, and extra trees took 17.15 ms to compute and the result of 

the NRMSE was 0.72. The comparison showed that both of the gradient boosting based frameworks performed 

better compared to both random forest and extra trees. Specifically, LightGBM performed the best in terms of 

both predictive performance and computational time. The results of this study serves as a purpose to find a 

faster alternative with similar or better accuracy compared to random forest as a baseline in predicting 

chlorophyll concentration. 
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1. Introduction:

Microalgae are a natural part of aquatic 

ecosystems. Though microalgae have shown to 

provide a lot of benefit to humans and the 

environment, severe microalgae blooming has 

shown to be detrimental towards humans and the 

environment [1]. As such, constant monitoring of 

microalgae proliferation done reliably and in real-

time is important to help mitigate or even prevent 

damages that might happen to the local 

environment/economy of which the blooming is 

occuring. According to a study done previously, 

one of the parameters that can be used to reliably 

predict algal bloom is by investigating the 

Chlorophyll-a (Chl-a) concentration in waterbodies 

[2]. Another study also supports this notion stating 

that Chl-a is still regarded as a typical primary 

proxy for microalgae bloom [3].  

This study focuses on predicting the concentration 

of chlorophyll that may be found in rivers and 

estuaries. Due to the non-linearity relationship 

between Chl-a concentration and its environmental 
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factors, models such as Artificial Neural Network 

(ANN) and Support Vector Machine (SVM) has 

been used to predict chlorophyll concentration [2]. 

As reported by Yongeun Park, it has been found 

that though the accuracy of training prediction were 

almost identical, SVM displayed a higher accuracy 

in the validation step compared to ANN. Another 

model,  Random Forest (RF), has also been used to 

predict chlorophyll concentration [4]. In said study, 

RF was compared to Support Vector Regression 

(SVR), and it was found that Random Forest (RF) 

performed better.  

Though the model RF works really well in 

predicting chlorophyll concentration prediction 

performance-wise, due to the nature of how RF 

works, RF may be less effective in predicting in 

real-time due to the sheer number of trees generated 

and how each data has to be computed for each 

individual decision trees. Having a faster model in 

predicting with similar levels of accuracy may help 

in detecting potential microalgae bloom earlier. 

Though, because RF has proven to be reliable, as 

such this study will try to explore other models 

related to ensembling Regression Trees in hopes of 

finding a model with faster prediction time and 

better accuracy compared to RF. The specific 

models that will be compared with RF will be 

Extremely Randomized Trees (Extra Trees) and 

gradient boosting based frameworks. Specifically, 

Extreme Gradient Boosting (XGBoost) and Light 

Gradient Boosting Machine (LightGBM). 

In this study, a comparison of how well the models 

perform will be done through measuring the 

prediction performance and computing time 

needed of each of the models. The parameters that 

were used in this study are the following: 

orthophosphate, ammonia, nitrate, nitrite, water 

temperature, pH, dissolved oxygen, and the 

chlorophyll concentration itself. The water quality 

dataset has been obtained through the Department 

for Environment, Food & Rural Affairs’ publicly 

available dataset.  

2. Experimental Setup 

2.1 Dataset and Variables 

The water quality dataset obtained to conduct this 

study is a publicly available dataset through the 

Department for Environment, Food & Rural 

Affairs’ website [5]. All of the data that were used 

in this study are mostly for monitoring purposes, 

and the type of water body that were used in this 

study are all made up of rivers (or running surface 

water) and estuaries. The water bodies that were 

used in this study come from different parts of 

England. Due to the lack of data in some individual 

months, rows with missing data were not taken into 

account. Another important thing to note is that the 

data that was accumulated contains natural outliers 

that were kept. The data used in this study amounts 

to 639 rows of data. The data used in this study are 

taken from completely random times between the 

range of 10th January 2022 up to 21st June 2024. 

The features used in this study are all numerical 

features and contain no categorical feature. The 

features chosen in this study follow similarly to 

studies done in the past to predict chlorophyll 

concentration. The features that were used in this 

study are the following: orthophosphate, ammonia, 

nitrate, nitrite, water temperature, pH, and 

dissolved oxygen. The statistics of each of the 

water quality parameters are shown in Table 1.

Table 1. Statistics of water quality in the dataset 

Parameter Mean Max Min Standard Deviation 

Orthophosphate (mg/l) 0.146516 1.9 0.01 0.191571 

Ammonia (mg/l) 0.088047 1.7 0.03 0.177738 

Nitrate (mg/l) 8.657063 33.6 0.194 4.062073 

Nitrite (mg/l) 0.047285 0.63 0.004 0.069705 

Water Temperature (celcius) 10.613255 22.3 0.1 4.521982 

pH 7.880689 8.97 6.69 0.263007 

Dissolved Oxygen (mg/l) 9.850282 15.8 1.82 2.085699 

Chlorophyll Concentration (µg/l) 5.548732 230 0.5 14.457147 
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2.2 Assessing Model Performance 

The method of comparing the performance of the 

models used in this study are as per the following, 

the Root Mean Square Error (RMSE), and the 

Normalized Root Mean Square Error (NRMSE), 

which could be expressed as the following 

equations: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

𝑛
,  

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

√∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

𝑛

, 
(1) 

where 𝑦 is the observed value, �̂� is the predicted 

value, �̅� is the mean value of the observed value, 

and 𝑛 is the number of samples. This variation of 

NRMSE was used instead of the commonly used, 

where the RMSE is divided by the mean of the 

observed data. This is to take into account how the 

mean is easily skewed by extreme values, because 

in this study extreme values were kept. Therefore 

instead of using the mean, in this study, the 

standard deviation of the observed data will be used 

instead. Lower values of NRMSE indicate less 

difference between the observed values and the 

predicted values. 

The method of comparing the time it takes for 

each model to predict used in this study is by using 

the average amount of time elapsed for each model 

to predict, which could be expressed as the 

following equations: 

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒

= 𝑇𝑖𝑚𝑒𝑒𝑛𝑑

− 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡, 

 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒

=
𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
. 

(2) 

The amount of iterations used in this study is 10000 

iterations. It is to be noted that, the number 10000 

was chosen arbitrarily, though it was done with the 

aim of generating a large amount of samples. In this 

study, the time it takes to train the model will not 

be taken into account, because the focus of this 

study is to find a better model, compared to 

Random Forest as a baseline, when trying to predict 

in real-time. 

3. Methodology 

3.1 Classification and Regression Tree 

Classification and Regression Tree (CART) is a 

machine learning model which is made up of 

classifiers acting as the partition [6]. CART 

consists of the root node, internal node, and leaf 

node. Both the root node and internal node acts as 

the classifier, while the leaf node is the outcome. 

The depth of the tree is the length from the root 

node to the leaf node with the largest amount of 

depth. 

3.2 Random Forest 

The Random Forest model is a machine learning 

model that combines a collection of unpruned trees 

to perform classification and regression. In a 

random forest model, each individual CART in a 

random forest relies on values of a random vector 

sampled independently from the training set, 

usually through bagging, to perform classifications 

and predictions. Leaf node splits are done by 

choosing the best split over randomly chosen 

subset of features. When used in regression 

problems, the results from each regression tree is 

averaged to reach the final prediction. Random 

Forest also has resistance towards overfitting due 

to the law of large numbers [7].  

3.3 Gradient Boosting framework 

Gradient Boosting is a machine learning 

algorithm that constructs additive approximations 

iteratively, which is expressed by the following 

equation: 

𝐹𝑛(𝑥) = 𝐹𝑛−1(𝑥) + 𝜌𝑛ℎ𝑛(𝑥). (3) 

In this study, there are two libraries that were used 

that implements the gradient boosting framework, 

namely XGBoost and LightGBM. XGBoost is a 

framework which implements gradient boosting. 

Generally, XGBoost uses a greedy algorithm to 

find splits. XGBoost has the ability to parallelize 

split finding by storing data in blocks, which are in-

memory units. By doing this, it allows different 

blocks to be distributed, thus allowing 
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parallelization, which in turn makes learning faster. 

XGBoost implements regularization similar to 

Regularized Greedy Forest which is expressed by 

the following equation:  

𝐿(𝜙) = ∑ 𝑙(�̂�𝑖 , 𝑦𝑖)

𝑖

+ ∑ Ω

𝑘

(𝑓𝑘),  

Ω(𝑓) =  𝛾𝑇 +
1

2
𝜆‖𝜔‖, (4) 

where 𝑙(�̂�𝑖 , 𝑦𝑖) represents the loss function that 

measures the difference between the prediction and 

the target, and Ω(𝑓) which represents the parameter 

for regularization [8]. 

LightGBM is another framework that utilizes the 

gradient boosting framework. The difference 

between LightGBM and the alternatives proposed 

in this study lies in the split finding algorithm, tree 

growth strategy, and data sampling. LightGBM 

uses a histogram-based algorithm to find splits. The 

histogram-based algorithm buckets continuous 

feature values into discrete bins, and then the 

algorithm uses those bins to construct feature 

histograms during training [9]. The histogram-

based algorithm later finds the best split points 

based on the feature histograms. LightGBM uses a 

leaf-wise tree growth strategy. Essentially, it 

chooses the leaf with max delta loss to grow. 

Furthermore, LightGBM introduces a novel way of 

data sampling which is known as GOSS (Gradient-

based One-side Sampling). Essentially the training 

set retains all instances with large gradients and 

performs random sampling on instances with small 

gradients. To compensate for the change in data 

distribution, when computing the information 

again, GOSS introduces a constant multiplier, 

which is expressed by Eq. (5), for the data instances 

with small gradients.  

1 − 𝑎

𝑏
. (5) 

where a represents the large gradient instances and 

b represents the small gradient instances. 

3.4 Extremely Randomized Trees 

The Extra Trees model is a machine learning model 

that works similarly to Random Forest, where the 

model combines a collection of decision trees to 

perform classification and regression. However, 

the difference between random forest and extra 

trees lies in the process of how the trees are made. 

In random forest, CARTs are created through 

bootstrapping the training set and node splitting is 

done greedily over a random selection of subset of 

features, whereas in extra trees, CARTs are created 

using the whole training set and node splits are 

done in an entirely random manner. Similar to 

Random Forest, in regression problems, the results 

from each regression tree is averaged to reach the 

final prediction [10]. 

3.5 Hyper-parameter optimization using Random 

Search 

Properly configuring the hyper-parameters of each 

model will influence how the model performs. 

Hyper-parameters are essentially parameters which 

control the learning process of the models. 

Specifically in tree-based models, these are the 

components which need to be optimized: the 

maximum tree depth, function to measure the 

quality of splits, split selection method, number of 

considered features, minimum number of data 

points to split a decision node, maximum number 

of leaf nodes, and the minimum number of the total 

weight. Ensembled tree models have the same 

hyper-parameters as decision tree models, with 

additional hyper-parameters to consider such as: 

the number of decision trees, the minimum loss 

reduction for a split, L1 and L2 regularization on 

leaf nodes, and learning rate [11]. 

Though, strictly speaking, manually tuning each 

parameter for each model is highly inefficient and 

time-consuming. Therefore in this study, hyper-

parameter optimization will be used to help 

alleviate most of the effort needed to tune the 

hyper-parameters. Hyper-parameter optimization 

are algorithms developed to identify good value for 

hyper-parameters [12]. In this study, the algorithm 

that has been chosen to perform the optimization is 

Random Search. Essentially, Random Search 

randomly selects a pre-defined number of samples 

between the upper and lower bound in the search 

space as candidate hyper-parameter values, and 

then the algorithm will train using the random 
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combinations until the defined number of iterations 

[11]. 

3.6 Implementation 

In this segment, the method of implementing the 

study will be discussed. The dataset was split into 

an 80-to-20 train-to-test ratio. After splitting the 

dataset, hyper-parameter optimization was 

performed before the process of training using the 

model itself. After finding the appropriate hyper-

parameters, the training process begins, which is 

then followed-up with the testing process, where 

the time it takes for each model to predict will also 

be recorded. After that, the results of the testing 

process will be compared with the observed data to 

assess the performance of the models. The process 

could be expressed through the following:

 

Algorithm 1: Implementation 

Input: X,y,paramgrid 

Output: nrmse, mean_time 

Process:  

Xtrain,ytrain,Xtest,ytest=train_test_split(X,y,test_size=0.2) 

param=randomized_search(paramgrid) 

mdl=model(param) 

for i=0:10000 

start=time() 

mdl.fit(Xtrain,ytrain) 

total_time=total_time+time()-start 

end 

mean_time=total_time/10000 

print(mean_time) 

ypred=mdl.predict(Xtest) 

rmse=root_mean_squared_error(ytest,ypredict) 

nrmse=rmse/standard_deviation(y) 

print(nrmse) 

4. Results and discussion: 

Table 2 shows the hyper-parameters used in this 

study. It is important to note that there are some 

hyper-parameters that are not shared among the 

models, or there are cases where the default setting 

is better. In such cases, the hyper-parameters for the 

model will instead be noted as ‘-‘ in the table. 

Furthermore, hyper-parameters that are similar but 

has different names across the different models will 

be substituted using a description of what the 

hyperparameter does. Another important detail to 

point out is that the parameters random_state and 

n_jobs do not contribute to the model’s precision. 

The parameter random_state is only there for 

reproducibility, and n_jobs is used to utilize all of 

the available cpu cores, or in other words 

parallelization.
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Table 2. The hyper-parameters of each models used in this study 

Hyper-parameter Random Forest XGBoost LightGBM Extra Trees 

random_state 7 7 7 7 

n_jobs -1 -1 -1 -1 

Number of trees 45 40 70 45 

Minimum number of 

samples required to 

split an internal node 

2 - - 10 

Maximum number of 

features when splitting 

2 - - 2 

Maximum depth of 

tree 

10 12 9 10 

Minimum loss 

reduction required to 

make a further 

partition on a leaf node 

- 3 15 - 

L1 Regularization - - 1 - 

L2 Regularization - 27.005 0.55 - 

Booster - ‘dart’ ‘dart’ - 

Step size shrinkage - 0.15 0.5 - 

Maximum number of 

bins to bucket features 

- - 30 - 

 

As mentioned before, the bulk of the work done to 

tune the hyper-parameters of each models were 

mostly done with the help of hyper-parameter 

optimization, though some manual tuning was also 

done to improve upon the results of the hyper-

parameter optimization even further. Figure 1 

shows the results of the models compared to the 

observed value, while Table 3 presents the RMSE 

and NRMSE of the predictive models used in this 

study. 

Table 3. The performance results of the models and the time needed for each of the models to make 

the predictions 

Metric Random Forest XGBoost LightGBM Extra Trees 

Time (ms) 16.95 8.28 2.81 17.15 

RMSE 10.89 10.21 9.09 10.39 

NRMSE 0.75 0.71 0.63 0.72 
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Figure 1. Results of the Predictive Model and the Observed Value 

Utilizing the metrics that has been proposed before, 

it is to be noted that the predicting performance of 

the models are mostly similar. LightGBM has been 

found to perform the best out of the proposed 

models in terms of both predictive performance. 

Both random forest and extra trees did worse than 

two of the gradient-boosting models in terms of 

prediction performance. 

The performance of both gradient boosting 

libraries compared to random forest and extra trees 

in terms of prediction performance can be 

attributed to how the models deal with prediction 

errors. In both random forest and extra trees, both 

prevent prediction errors by controlling the tree’s 

complexity and how it selects its features, in other 

words by controlling the amount of depth a tree, the 

number of nodes of each tree, and the amount of 

features sampled when splitting. On the other hand, 

while both gradient boosting-based models is also 

able to control the tree’s complexity as well, both 

of the gradient boosting-based models have 

regularization, which affects the loss function of 

the model. 

Subsequently, LightGBM and XGBoost also 

performed better in computational time. The 

complexity of the models affect the computational 

time to predict. XGBoost and LightGBM both have 

less leaf nodes in average compared to both random 

forest and extra trees. Though as shown in Table 4, 

LightGBM has significantly less leaf nodes and 

tree depth compared to XGBoost. Besides that, 

LightGBM also grows its trees leaf-wise compared 

to the other models, which grows the trees depth-

wise. In other words, this alters the final structure 

of the trees of LightGBM. Though, it is to be noted 

that random forest did better than extra trees despite 

having more leaf nodes. Referring to Table 2, in 

this study the minimum number of samples 

required to split an internal node in extra trees is 

higher than that of random forest, thus altering the 

final structure of the trees of extra trees. 
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Table 4. The average amount of leaf nodes and tree depth of each models 

Attribute Random Forest XGBoost LightGBM Extra Trees 

Leaf nodes 78.73 42.33 11.46 50.38 

Tree depth 10 11.38 7.91 10 

 

5. Conclusion: 

The main focus of this study is to compare several 

well-known ensembled tree models to find a better 

performing model compared to Random Forest as 

the baseline in the context of predicting 

cholorophyll concentration content that can be 

found in  rivers and estuaries. In this study, the 

models were compared in terms of prediction 

performance and computational time. NRMSE was 

used as a metric to compare the prediction 

performance of the models, and the average 

computational time over an arbitrary amount of 

iterations was used to compare the prediction speed 

of the models. In this study, the results of all of the 

models were mostly similar. Though, the model 

that was found to perform the best in terms of 

prediction performance and computational time is 

LightGBM. 
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