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Abstract: 

Damage to buildings often occurs, and one of the causes is natural disaster such as earthquakes. Earthquakes 

frequently result in significant damage to buildings, causing financial losses due to damage to building 

facilities and even loss of life. Therefore, it is crucial to assess the damage to buildings to determine the extent 

of the damage. This research proposed an algorithm for detecting building damage using gradient boosting 

method. This method is similar to decision tree approach, but the decisions tree re-evaluated, resulting in 

smaller and more accurate data. For this analysis, the dataset was divided into two parts: training set and 

testing set. 80% of the dataset was used as training data, while 20% was used as testing data. After thorough 

data preprocessing, the gradient boosting method achieved an accuracy of 60.86% from large number of 

datasets compared to other methods, such as decision trees and random forests, the decision tree tends to 

overfit or underfit, especially with complex data. Meanwhile, the random forest method is generally faster and 

less prone to overfitting on large datasets. However, Gradient Boosting (GB) can achieve better accuracy, 

particularly for complex datasets. This result is indicating the effectiveness of the gradient boosting method. 

Despite the large and complex dataset, where prediction results can sometimes vary, the outcomes demonstrate 

good performance. Future research should focus on refining datasets and optimizing the parameters used for 

predicting building damage.  
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Introduction: 

Earthquake are among the most severe natural 

disasters, causing significant property damage and, 

more importantly, resulting in loss of life. 

Currently, accurately predicting the precise 

location where such events may occur remains a 

challenge [1]. Given that buildings constitute 

essential infrastructure utilized by many people, the 

accuracy and availability of information regarding  

structural damage are critical for effective post-

disaster response and damage assessment [2]. This 

paper focuses on detecting building damage caused 

by earthquakes. The purpose of this journal is to 

detect the percentage level of damage that occurs 

in the building. This damage can include overall 

damage, damage based on the tilt of the building 

due to the earthquakes, damage that poses a risk to 
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nearby buildings, severe damage to the building’s 

foundation, moderate damage to the building’s 

foundation, and minimal damage to the damage 

building’s foundation [3]. This aims to determine 

the severity of the damage to the building through 

data from the building’s structure [4]. The 

integration of hybrid deep learning models, as 

demonstrated by recent advancements, offers 

promising enhancements in the accuracy of 

detecting building damage from natural disasters 

like earthquakes [5]. Several studies have 

previously addressed the detection of building 

damage caused by earthquake using various 

approaches such as Convolutional Neural 

Networks (CNN) for building damage detection [6] 

and other using deep learning [7]      

Previous research on building damage detection 

has been conducted by various authors. Author [8] 

detected building damage using an entropy-based 

sensor algorithm combined with machine learning 

and an auto regressive approach. The machine 

learning techniques used included Principal 

Component Analysis (PCA) and poly-exponential 

methods to develop a nonlinear model for detecting 

building damage, achieving prediction accuracy 

above 95%. The same author also employed a 

different approach [9], using an entropy-based 

sensor algorithm to detect building damage, with 

similar accuracy result exceeding 95%. Author 

[10], used OPCE algorithm to detect building 

damage, achieving accuracy of 83.3%, 97.4%, and 

78.5% in cities of Yushu, Ishinomaki, and Mashiki, 

respectively. Meanwhile, author [11] used 

orthophoto imagery for building damage detection, 

with data collected from Kumamoto earthquake in 

Japan. The accuracy obtained in this study was 

76.86%. 

Another machine learning method which often 

used for regression task is the gradient boosting 

algorithm. The gradient boosting (GB) method is a 

machine learning method used to address 

regression and classification problems. This 

method can also utilize complex data to predict 

errors in the data. This method has been 

implemented in various studies. Author [12] used 

the gradient boosting method to predict short-term 

wind power output. From a fifteen-minute study, 

the test results achieved a performance with 

normalized mean absolute error of 5.15%. author 

[13] used the gradient boosting method to 

investigate anomalies in the electrical grid that 

cause data imbalance. According to author [13], the 

method was used because it demonstrated low 

performance values and had many variables. author 

[14] used gradient boosting to calculate energy 

usage in commercial building. The analysis results 

provided a prediction accuracy for R-squared and 

root mean square error (RMSE) of more than 80% 

from data tested on 410 commercial buildings. 

Gradient boosting has also been used to detect 

building damage. This research was conducted by 

author [15] and achieved high accuracy.  

The Gradient boosting method operated by 

sequentially adding predictors to an ensemble, with 

each new predictor correcting the errors of its 

predecessor and fitting to the residuals left by 

previous predictors [16]. Gradient Boosting 

Decision Tree (GBDT) is widely used machine 

learning algorithm, with efficient implementations 

such as XG Boost and GBRT. Despite various 

engineering optimizations in these 

implementations, their efficiency and scalability 

are still limited when dealing with high-

dimensional features and large datasets [17]. 

Gradient boosting is favored by many researchers 

due to its ability to deliver accurate results. For 

instance, researcher [18] utilized this method to 

predict household electricity consumption. 

Similarly, researcher [19] employed this method to 

forecast user preferences in online shopping. 

In particular, this paper offers contribution as 

follows: 

1. The implementation of GB algorithm in 

predicting earthquake impact occurred in the 

Gorkha district of Gandaki Pradesh, Nepal. 

2. We propose new method detecting damage 

caused by earthquakes using GB method, 

which improves accuracy over traditional 

detection techniques. 

3. This paper uses a large dataset of building 

structures affected by past earthquake, 

enabling more robust training and testing of 

the detection model. 

https://doi.org/10.18535/sshj.v9i01.1575
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4. The study compares the performance of GB 

with other machine learning techniques, such 

as Decision Trees and Random Forests, 

demonstrating its superior ability to handle 

complex datasets  

This research is organized into four sections: the 

first section is the introduction, which explains the 

research object, the problems encountered, and the 

proposed solutions. The second section describes 

the gradient boosting method and discusses 

previous research findings using this machine 

learning technique. 

Method: 

This research proposed the use of gradient boosting 

to predict building damage. For a foundational 

understanding of the gradient boosting method and 

its previous predictive applications, please refer to 

[20] and [21] . The objective of our proposed 

method is to enhance the efficiency and accuracy 

of building damage predictions. The steps involved 

in the proposed method are outlined in Fig. 1.  the 

primary method used for building damage 

detection is the GB algorithm. This technique was 

chosen due to its ability to handle complex, non-

linear relationships between input features and 

building damage. GB iteratively improves the 

model by minimizing the residual error of previous 

models.

 
Fig. 1, Research Step 

A. Data Collection 

The dataset used in this research was obtained from 

Kaggle, which also provided the parameters for 

assessing building damage. The data utilized form 

Kaggle pertains to the earthquake that occurred in 

the Gorkha district of Gandaki Pradesh, Nepal. The 

dataset includes several parameters, such as 

building age, the number of floors before and after 

the earthquake, building height before and after 

quake, plinth area, and building condition after 

earthquake. This dataset offers a wide range 

variable for evaluating and predicting building 

damage. Such comprehensive data allows for a 

more accurate and detailed analysis of the factors 

contributing to structural damage. 

B. Data Preprocessing 

Initial preprocessing is a crucial step in preparing 

the dataset for machine learning models. The data 

preprocessing begins by prioritizing the handling 

of errors inherent in the method used. This 

approach aims to ensure that predictions achieve 

high accuracy and validity. This machine learning 

technique takes into account the building height 

before and after the earthquakes. This 

consideration is essential because some buildings 

experience no damage, while others suffer severe 

damage. The preprocessing steps is employed to 

ensure that the dataset is clean, and properly 

prepared for evaluation of machine learning 

models. 

C. Data Analysis  

The predictive model will be applied to the dataset, 

which includes the total number of samples. For 

this analysis, the dataset will be divided into two 

subnets: a training set and a testing set. The training 

set will use 80% of the total data to build the 

predictive model, while the remaining 20% will be 

used as the testing set to validate the model’s 

accuracy. The analysis focused on determining the 

impact of various earthquake-related and building 

specific factors on damage severity. The 

https://doi.org/10.18535/sshj.v9i01.1575
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importance of each features was evaluated using 

feature importance rankings provided by the GB 

model. 

D. Model Training and Validation 

Gradient boosting was chosen for its ability to 

handle complex data, including data that contains 

errors or inaccuracies. The model was trained using 

the training set on a system equipped with an 8-core 

processor, 16GB of RAM, and a graphics card with 

2GB of VRAM. 

E. Evaluation 

After developing the building damage prediction 

model, it is crucial to assess the model’s 

performance to determine its accuracy in predicting 

building damage. The model evaluation was 

conducted to assess the performance of gradient 

boosting. The model’s performance was evaluated 

using a confusion matrix and accuracy metrics. 

The confusion matrix is a tool used in classification 

problems to evaluate the performance of a 

classification model. Confusion matrix is a table 

that is used to define the performance of a 

classification algorithm Eq. 1. This matrix helps in 

assessing the accuracy and types of errors made by 

the model. The formula for this matrix is: 

 Confusion matrix = 

[
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

] 
 (1) 

Where the true represent the number of correct 

predictions and false the number of incorrect 

predictions. For the binary classification problem, 

the confusion matrix is typically structured as 

follows: 

Table 1, Confusion matrix Structure 

 Predictive 

Positive 

Predictive 

Negative 

Actual 

Positive 

True Positive 

(TP) 

False Negative 

(FN) 

Actual 

Negative 

False Positive 

(FP) 

True Negative 

(TN) 

 

Accuracy is derived from Confusion matrix and is 

expressed as Eq. 2.: 

𝑎𝑐𝑐 =
1

𝑝
∑ 𝑛𝑦(𝑖)

𝑝

𝑖=1

 

 

𝑛𝑦(𝑖) = {
1if y(i) = ŷ(i)
0 if otherwise

 

(2) 

 

Where 𝑛𝑦 is a condition vector, which is 1 if the 

predicted and the real output is same, and vice 

versa. This metric is a type of average that’s 

calculated times by 100% for the average accuracy 

percentage. 

Result and Discussion:  

In this section, we will present the result of the 

gradient boosting method. The result obtained from 

this method use classification. We will display a 

graph of the confusion matrix generated by 

calculating the datasets. This approach allows for a 

detailed evaluation of the model’s performance 

across various classes within the dataset. By 

analyzing the confusion matrix, we can identify 

specific areas where the model excels or requires 

improvement. Previous studies have demonstrated 

the utility of confusion matrices in refining model 

parameters and enhancing overall predictive 

accuracy. The confusion matrix is a tool to evaluate 

the performance of a classification model by 

comparing the true labels with the predicted labels 

in this case, the matrix evaluates the ability of a 

Gradient Boosting Classifier to correctly classify 

buildings as Damaged-Not used, Damaged-

Repaired and used, and Not damage. By 

providing a detailed overview of correct and 

incorrect prediction of each class, the matrix offers 

valuable insight into the model’s strength and 

weakness. This analysis aids in identifying 

potential areas for improvement, such as class 

imbalances or tendencies to misclassify particular 

building damage categories  

Class Definitions: 

• Damaged-Not used: Buildings that were 

damaged and are no longer in use. 

https://doi.org/10.18535/sshj.v9i01.1575
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• Damaged-Repaired and used: Buildings 

that were damaged but have been repaired 

and are still in use 

• Not damaged: Buildings that were not 

affected by the earthquake.  

Key Observation: 

1. True Positives (Diagonal elements): 

• Damaged-Not used: The model 

correctly classified 158,759 buildings 

in this category. 

• Damaged-Repaired and used: The 

model correctly predicted 1,428 

buildings in this category. 

• Not damaged: The model correctly 

classified 23,318 buildings  

 

2. False Positives (Off-diagonal elements): 

• Damaged-Not used: The model 

incorrectly classified 1,058 and 6,455 

buildings as “Damaged-Not used” 

from the other categories. 

• Damaged-Repaired and used: The 

classifier mistakenly predicted 

71,179 buildings that belong to this 

class and 13,768 from other 

categories. 

• Not damaged: The model incorrectly 

classified 24,389 and 1,175 buildings 

in this class from other categories

 

 

Fig. 2, Confusion Matrix for Gradient Boosting 

Based on the Fig. 2, we calculated the accuracy 

obtained from the gradient boosting classification 

predictions. The result indicate that the model 

performs well under the given conditions, 

achieving a high level of precision in predicting 

building damage. These findings are consistent 

with previous studies that highlight the 

effectiveness of gradient boosting in handling 

complex datasets and improving prediction 

accuracy in various applications. The Gradient 

Boosting Classifier performs well for the 

Damaged-Not used class but exhibits some 

confusion between Damaged-Repaired and used 

and Not damaged categories. Further model tuning 

or feature engineering may improve the 

performance, especially in differentiating between 

repaired and still-used buildings and those that 

were not damaged. We also compared the accuracy 

of gradient boosting with the random forest with 

number of trees 100 and decision tree methods to 

differentiate the performance of these three 

approaches.  

https://doi.org/10.18535/sshj.v9i01.1575
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Table 2, Accuracy Result Using Confusion 

Matrix 

Method Accuracy 

Gradient Boosting 60.86% 

Random Forest (100) 59.37% 

Decision Tree 55.64% 

 

Table 2 provides evidence of the result obtained 

from the analysis using the three methods. The 

testing results show a high accuracy of 60.86%. 

Gradient boosting demonstrates a 1% higher 

accuracy compared to the random forest method 

and a 5% higher accuracy compared to the decision 

tree method. Among the three methods tested, we 

selected gradient boosting due to its ability to 

minimize prediction errors, particularly in complex 

datasets, resulting in higher accuracy. 

Conclusion: 

In this study, we employed the gradient boosting 

method to predict the extent of damage to buildings 

resulting from earthquakes. We utilized eight 

parameters to forecast the post-earthquake 

condition of the structures. The predictive model 

yielded an accuracy of 60.86% based on the results 

obtained from testing the gradient boosting 

algorithm. However, this study has certain 

limitations, particularly concerning in the 

inconsistency of the obtained accuracy. The 

accuracy tends to fluctuate due to insufficient data 

processing, although the variations are generally 

minor. Future research could focus on 

implementing more advance optimization 

techniques to enhance predictive accuracy. 

Additionally, applying this method to other 

datasets or incorporating a broader range of 

variables could potentially yield improved results. 

This analysis suggests the need for a focus on 

misclassified examples, particularly within the 

“Damaged-Repaired and used” class, for further 

model optimization. 
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