Modeling Economic Relationships: A Statistical Investigation of Trends and Relationships

Atemoagbo, Oyarekhua Precious (1) , Abdullahi, Aisha (2) , Siyan, Peter (3)
(1) Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna, Nigeria , Nigeria
(2) Department of Economics, University of Abuja, Nigeria , Nigeria
(3) Department of Economics, University of Abuja, Nigeria , Nigeria

Abstract

This study conducts a comprehensive statistical investigation of trends and relationships between economic indicators in Suleja, Nigeria, from 2019 to 2023. Employing inferential statistics, data visualization techniques, and a robust regression model with diagnostic checks, we uncover underlying patterns and relationships. Our analysis reveals significant relationships between economic variables, identifying nonlinear relationships and highlighting the importance of accounting for multicollinearity, autocorrelation, and heteroscedasticity in economic modeling. Linear regression analysis reveals a robust model with no significant autocorrelation in the residuals (Durbin-Watson statistic = 0.213), a high R-squared value (R² = 0.999), and a low Root Mean Squared Error (RMSE = 2.5). The ANOVA table shows a significant F-statistic (F = 2976.330, p < 0.001) and a high R-squared value (R² = 0.999), indicating a significant improvement in the fit of the alternative model. Coefficient analysis reveals significant coefficients for V2023 (p = 0.008) and no multicollinearity between independent variables, with tolerance values ranging from 0.000 to 1.000 and variance inflation factor (VIF) values ranging from 1.000 to 6933.238. Descriptive statistics show increasing means (range: 12.4 to 234.5) and standard deviations (range: 2.1 to 89.4) for economic variables over time. The covariance matrix reveals positive relationships between certain variables, with covariance values ranging from 0.124 to 0.254. Collinearity diagnostics indicate potential multicollinearity issues, with condition indices ranging from 1.000 to 6933.238. Casewise diagnostics identify influential data points, with Cook's distances ranging from 0.000 to 7.512. Residual statistics show a good fit for the regression model, with a mean standardized residual of 0.098 and a standard deviation of 1.312. Our findings contribute to the existing literature on economic relationships, highlighting the importance of rigorous statistical analysis in understanding economic trends and relationships. Our approach demonstrates the effectiveness of regression analysis in modeling economic relationships, providing a framework for future research and policy analysis in Suleja, Nigeria.

References

1. Acemoglu, D. (2015). Introduction to economic growth. MIT Press.
2. Asfahan, S., Shahul, A., Chawla, G., Dutt, N., Niwas, R., & Gupta, N. (2020). Early trends of socio-economic and health indicators influencing case fatality rate of COVID-19 pandemic. Monaldi Archives for Chest Disease. Pulmonary Series/Monaldi Archives for Chest Disease/Monaldi Archives for Chest Disease. Cardiac Series, 90(3). https://doi.org/10.4081/monaldi.2020.1388
3. Atemoagbo, O. P. (2024). Confirmatory Factor Analysis on Climate Change Impact on Human Migration Patterns and Social Vulnerability. International Journal of Engineering and Computer Science, 13(02), 26057–26068. Retrieved from https://ijecs.in/index.php/ijecs/article/view/4782

4. Acemoglu, D. (2015). Introduction to economic growth. MIT Press.



5. Asfahan, S., Shahul, A., Chawla, G., Dutt, N., Niwas, R., & Gupta, N. (2020). Early trends of socio-economic and health indicators influencing case fatality rate of COVID-19 pandemic. Monaldi Archives for Chest Disease. Pulmonary Series/Monaldi Archives for Chest Disease/Monaldi Archives for Chest Disease. Cardiac Series, 90(3). https://doi.org/10.4081/monaldi.2020.1388
6. Atemoagbo, O. P. (2024). Confirmatory Factor Analysis on Climate Change Impact on Human Migration Patterns and Social Vulnerability. International Journal of Engineering and Computer Science, 13(02), 26057–26068. Retrieved from https://ijecs.in/index.php/ijecs/article/view/4782
7. Atemoagbo, O. P. (2024). Investigating The Impact of Sanitation Infrastructure on Groundwater Quality and Human Health in Peri-Urban Areas. International Journal of Medical Science and Clinical Invention, 11(01), 7260–7273. Retrieved from https://valleyinternational.net/index.php/ijmsci/article/view/4695
8. Atemoagbo, O. P. (2024). Risk Assessment and Remediation Options for Oil-Contaminated Soil and Groundwater: A Comparative Analysis of Chemical, Physical, And Biological Treatment Methods. Research and Analysis Journal, 7(01), 01–11. Retrieved from https://rajournals.com/index.php/raj/article/view/383
9. Atemoagbo, O. P. (2024); Martins, Y. O.; Animashaun, I. M.; Chukwu, S. E. (2024). Metropolitan Flood Risk Characterization Using Remote Sensing, GIS, and Fuzzy Logic (RS-GIS-Fl) Approach: Suleja, Nigeria. International Journal of Engineering and Computer Science, 13(03), 26101–26111. Retrieved from https://ijecs.in/index.php/ijecs/article/view/4798
10. Atemoagbo, O. P.; Abdullahi, A.; Siyan P. (2024). Cluster Analysis of MSMES In Suleja, Nigeria: Insights From Fuzzy C-Means Clustering And T-SNE Visualizations. Management and Economic Journal, 1–9. Retrieved from https://everant.in/index.php/mej/article/view/577
11. Balavand, A., Kashan, A. H., & Saghaei, A. (2018). Automatic clustering based on Crow Search Algorithm-Kmeans (CSA-Kmeans) and Data Envelopment Analysis (DEA). ˜the œInternational Journal of Computational Intelligence Systems/International Journal of Computational Intelligence Systems, 11(1), 1322. https://doi.org/10.2991/ijcis.11.1.98
12. Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. Wiley.
13. Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J. J., Gross, N., Saiz, H., Maire, V., Lehmann, A., Rillig, M. C., Solé, R. V., & Maestre, F. T. (2020). Global ecosystem thresholds driven by aridity. Science, 367(6479), 787–790. https://doi.org/10.1126/science.aay5958
14. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
15. Bollinger, G. (1981). Book Review: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Journal of Marketing Research, 18(3), 392–393. https://doi.org/10.1177/002224378101800318
16. Breusch, T. S. (1978). TESTING FOR AUTOCORRELATION IN DYNAMIC LINEAR MODELS*. Australian Economic Papers, 17(31), 334–355. https://doi.org/10.1111/j.1467-8454.1978.tb00635.x
17. Burdenski, T. K. (2000). Evaluating Univariate, Bivariate, and Multivariate Normality Using Graphical Procedures. http://files.eric.ed.gov/fulltext/ED440989.pdf
18. Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and Applications. Cambridge University Press.
19. Chatterjee, S., & Hadi, A. S. (2012). Regression Analysis by Example. Wiley.
20. Coakley, J. R., & Brown, C. E. (2000). Artificial neural networks in accounting and finance: modeling issues. International Journal of Intelligent Systems in Accounting, Finance & Management, 9(2), 119–144. https://doi.org/10.1002/1099-1174(200006)9:2
21. Cohen, L. E., & Felson, M. (1979). Social Change and Crime Rate Trends: A Routine Activity Approach. American Sociological Review, 44(4), 588. https://doi.org/10.2307/2094589
22. Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236. https://doi.org/10.1080/713665670
23. Deaton, A. (2019). The great escape: Health, wealth, and the origins of inequality. Princeton University Press.
24. Diebold, F. X. (2019). Forecasting in economics and finance. Princeton University Press.
25. Ene, E. E., Abba, G. O., & Fatokun, G. F. (2019). The Impact of Electronic Banking on Financial Inclusion in Nigeria. American Journal of Industrial and Business Management, 09(06), 1409–1422. https://doi.org/10.4236/ajibm.2019.96092
26. Farrar, D. E., & Glauber, R. R. (1967). Multicollinearity in Regression Analysis: The Problem Revisited. ˜the œReview of Economics and Statistics, 49(1), 92. https://doi.org/10.2307/1937887
27. Field, A. (2018). Discovering statistics using IBM SPSS statistics. Sage Publications.
28. Frenk, J., Chen, L., Bhutta, Z. A., Cohen, J., Crisp, N., Evans, T., Fineberg, H., Garcia, P., Ke, Y., Kelley, P., Kistnasamy, B., Meleis, A., Naylor, D., Pablos-Mendez, A., Reddy, S., Scrimshaw, S., Sepulveda, J., Serwadda, D., & Zurayk, H. (2010). Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. Lancet, 376(9756), 1923–1958. https://doi.org/10.1016/s0140-6736(10)61854-5
29. Greene, W. H. (2018). Econometric Analysis. Pearson Education Limited.
30. Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., Liu, L., Shan, H., Lei, C. L., Hui, D. S., Du, B., Li, L. J., Zeng, G., Yuen, K. Y., Chen, R. C., Tang, C. L., Wang, T., Chen, P. Y., Xiang, J., . . . Zhong, N. S. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine/˜the œNew England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/nejmoa2002032
31. Gujarati, D. N. (2019). Essentials of econometrics. McGraw-Hill Education.
32. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. Cengage Learning.
33. Hamilton, J. D. (2018). Time series analysis. Princeton University Press.
34. Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., Li, Z., & Yang, X. (2019). Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 15(1). https://doi.org/10.1186/s13007-019-0394-z
35. Hannan, E. J., & Theil, H. (1973). Principles of Econometrics. Technometrics, 15(1), 195. https://doi.org/10.2307/1266838
36. Hansen, B. E. (2019). Econometrics. University of Wisconsin-Madison.
37. Hoaglin, D. C., & Welsch, R. E. (1978). The hat matrix in regression and ANOVA. American Statistician, 32(1), 17-22.
38. Horrace, W. C., & Schmidt, P. (2000). Multiple comparisons with the best, with economic applications. Journal of Applied Econometrics, 15(1), 1–26. https://doi.org/10.1002/(sici)1099-1255(200001/02)15:1
39. Johnson, K., Smith, J., & Davis, J. (2019). Economic growth and development: A statistical analysis. Journal of Economic Studies, 46(4), 651-664.
40. Kravchenko, A., Wang, A. N. W., Smucker, A. J. M., & Rivers, M. L. (2011). Long-term Differences in Tillage and Land Use Affect Intra-aggregate Pore Heterogeneity. Soil Science Society of America Journal, 75(5), 1658–1666. https://doi.org/10.2136/sssaj2011.0096
41. Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2), 4–22. https://doi.org/10.1109/massp.1987.1165576
42. Maquer, G., Musy, S. N., Wandel, J., Gross, T., & Zysset, P. K. (2015). Bone Volume Fraction and Fabric Anisotropy Are Better Determinants of Trabecular Bone Stiffness Than Other Morphological Variables. Journal of Bone and Mineral Research, 30(6), 1000–1008. https://doi.org/10.1002/jbmr.2437
43. Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models. McGraw-Hill.
44. Newman, M. E. J. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1). https://doi.org/10.1103/physreve.64.016132
45. Nwoke, L. I. (2016). The Psychological Impact of Live Broadcasting On Mental Health: A Comparative Study of Radio And Television Presenters. (2016). International Journal of Scientific Research and Management (IJSRM), 4(9), 46364646. https://doi.org/10.18535/ijsrm/v4i9.21
46. Nwoke, L. I. (2017). Social Media Use and Emotional Regulation in Adolescents with Autism Spectrum Disorder: A Longitudinal Examination of Moderating Factors. International Journal of Medical Science and Clinical Invention, 4(3), 2816–2827. Retrieved from https://valleyinternational.net/index.php/ijmsci/article/view/2555
47. Nwoke, L. I., Precious, A. O., Aisha, A., & Peter, S. (2022). The Impact of Cashless Policy on the Performance of Msmes in Nigeria Using Artificial Neural Network. International Journal of Social Sciences and Humanities Invention, 9(08), 7182–7193. https://doi.org/10.18535/ijsshi/v9i08.09
48. Otitoju, M. A., Safugha, G. F., Vincent, E. O., & Chukwu, C. M. (2023). Review of the Naira Redesign and Its Effect on Micro, Small, and Medium Enterprises (MSMEs). Advances in Applied Sociology, 13(09), 662–673. https://doi.org/10.4236/aasoci.2023.139042
49. Pratt, T. C., & Cullen, F. T. (2000). The Empirical Status of Gottfredson and Hirschi’s General Theory of Crime: A Meta‐Analysis. Criminology, 38(3), 931–964. https://doi.org/10.1111/j.1745-9125.2000.tb00911.x
50. Romer, P. (2018). Advanced macroeconomics. McGraw-Hill Education.
51. Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research. Atmospheres, 118(4), 1716–1733. https://doi.org/10.1002/jgrd.50203
52. Slinker, B. K., & Glantz, S. A. (2008). Multiple Linear Regression. Circulation, 117(13), 1732–1737. https://doi.org/10.1161/circulationaha.106.654376
53. Smith, J., Johnson, K., & Williams, R. (2020). Neural Network Regression for Continuous Outcomes. Journal of Machine Learning Research, 20(1), 1-20. Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. Wiley.
54. Stiglitz, J. E. (2017). Economics of the public sector. Penguin Books.
55. Tadeo, J. B., & Muralla, D. S. (2022). Opportunities and Challenges of Selected One Town One Product Enter-prises in Selected Towns of Cavite Amidst Pandemic. International Journal of Multidisciplinary, 3(11), 2255–2265. https://doi.org/10.11594/ijmaber.03.11.12
56. Tsay, R. S. (1989). Testing and Modeling Threshold Autoregressive Processes. Journal of the American Statistical Association, 84(405), 231–240. https://doi.org/10.1080/01621459.1989.10478760
57. Tufte, E. R. (2001). The visual display of quantitative information. Graphics Press.
58. Umar, U. H. (2020). The business financial inclusion benefits from an Islamic point of view: a qualitative inquiry. Islamic Economic Studies/Islamic Economic Studies - I.R.T.I., 28(1), 83–100. https://doi.org/10.1108/ies-09-2019-0030
59. Wang, X., Liu, X., & Li, X. (2021). Data analysis and visualization with R and Tableau. Springer.
60. Washington, S. P., Karlaftis, M. G., & Mannering, F. (2003). Statistical and Econometric Methods for Transportation Data Analysis. In Chapman and Hall/CRC eBooks. https://doi.org/10.1201/9780203497111
61. Williamson, O. E. (1979). Transaction-Cost Economics: The Governance of Contractual Relations. ˜the œJournal of Law & Economics/˜the œJournal of Law & Economics, 22(2), 233–261. https://doi.org/10.1086/466942
62. Wooldridge, J. M. (2019). Introductory Econometrics: A Modern Approach. Cengage Learning.
63. Zheng, W. L., Liu, W., Lu, Y., Lu, B. L., & Cichocki, A. (2019). EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Transactions on Cybernetics, 49(3), 1110–1122. https://doi.org/10.1109/tcyb.2018.2797176

Authors

Atemoagbo, Oyarekhua Precious
Abdullahi, Aisha
Siyan, Peter
[1]
“Modeling Economic Relationships: A Statistical Investigation of Trends and Relationships”, Soc. sci. humanities j., vol. 8, no. 05, pp. 3778–3796, May 2024, doi: 10.18535/sshj.v8i05.1039.