Different Heights Monthly and Yearly Mean Wind Speeds Investigation Using a Weibull Model: A Case of Short Ferry Route

Titus Laurent Longino (1) , Dr. Wilfred Jonson Kileo (2) , Enock Michael Kandimba (3) , Eng. Paul Theophily Nsulangi (4)
(1) Dar es Salaam Maritime Institute , Tanzania, United Republic of
(2) Lecturer, Dar es Salaam Maritime Institute , Tanzania, United Republic of
(3) Dar es Salaam Maritime Institute , Tanzania, United Republic of
(4) Assistant Lecturer, Dar es Salaam Maritime Institute , Tanzania, United Republic of

Abstract

The maritime industry, which has historically relied on onboard vessel single-unit conventional, non-renewable energy sources fossil fuels, is currently under increasing global renewable energy demand and environmental concern pressure to explore renewable energy options, especially for short ferry routes. Wind energy offers an alternative due to it is abundant and reliable along maritime routes. Even with major progress in land-based wind energy research, there is still a lack of study on maritime applications, particularly for short to medium maritime routes because the majority of research on the application of wind technologies has been conducted on large commercial vessels sailing on long routes. To assess if wind energy is feasible for onboard power generation, this study utilizes wind speed data from 2020 to 2023 from the Tanzania Meteorological Authority to explore wind energy potential along a ferry route located near Tanzania's coast region, namely the Kivukoni and Kigamboni ferry route within Dar es Salaam port along the Indian Ocean. The Weibull distribution and Standard Deviation Method (SDM) are used in this study to investigate the monthly and annual mean wind speeds at various heights. At 10 and 20 meters, the average wind speed in this route is comparatively 4.029931 and 8.52664m/s, respectively, indicating a promising potential for wind energy harnessing. For this wind speed statistics present a chance to investigate the possibility of adopting wind energy into the ferry's electrical power system. According to this study, to reduce reliance on single-unit conventional, non-renewable energy sources, ferry power systems must incorporate wind-assisted technology to provide a new pathway to promote the transition towards onboard multiple energy sources, particularly renewable energy sources.

References

1. AIJJOU, A. (2020). Wind Energy for Shipboard Electric Power Needs. International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 168–177. https://doi.org/10.30534/ijatcse/2020/2491.52020
2. Akdağ, S. A., & Güler, Ö. (2018). Alternative Moment Method for wind energy potential and turbine energy output estimation. Renewable Energy, 120, 69–77. https://doi.org/10.1016/j.renene.2017.12.072
3. Anwar, S., Zia, M. Y. I., Rashid, M., De Rubens, G. Z., & Enevoldsen, P. (2020). Towards ferry electrification in the maritime sector. Energies, 13(24). https://doi.org/10.3390/en13246506
4. Arief, I. S., & Fathalah, A. Z. M. (2022). Review of Alternative Energy Resource for the Future Ship Power. IOP Conference Series: Earth and Environmental Science, 972(1). https://doi.org/10.1088/1755-1315/972/1/012073
5. Aukitino, T., Khan, M. G. M., & Ra, M. (2017). Wind energy resource assessment for Kiribati with a comparison of di ff erent methods of determining Weibull parameters. 151(September), 641–660. https://doi.org/10.1016/j.enconman.2017.09.027
6. Aziz, A., Tsuanyo, D., Nsouandele, J., Mamate, I., Mouangue, R., & Abiama, P. E. (2023). Influence of Weibull parameters on the estimation of wind energy potential. Sustainable Energy Research. https://doi.org/10.1186/s40807-023-00075-y
7. Bishoge, O. K., Zhang, L., & Mushi, W. G. (2018). clean technologies The Potential Renewable Energy for Sustainable Development in Tanzania : A Review. 70–88. https://doi.org/10.3390/cleantechnol1010006
8. Chou, T., Kosmas, V., Acciaro, M., & Renken, K. (2021). A Comeback of Wind Power in Shipping : An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology.
9. Chusi, T. N., Mwendapole, M. J., Tengecha, N. A., & Zhang, X. (2022). East Africa Waterway Transport, Coastal Ports Growth, Opportunity and Challenges. International Journal of Humanities and Social Science Invention (IJHSSI), 11(2), 01–11. https://doi.org/10.35629/7722-1102030111
10. Fazelpour, F., Markarian, E., & Soltani, N. (2019). Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran. 109(2017), 646–667.
11. Gagatsi, E., Estrup, T., & Halatsis, A. (2016a). Exploring the potentials of electrical waterborne transport in Europe : the E-ferry concept. Transportation Research Procedia, 14, 1571–1580. https://doi.org/10.1016/j.trpro.2016.05.122
12. Gagatsi, E., Estrup, T., & Halatsis, A. (2016b). Exploring the Potentials of Electrical Waterborne Transport in Europe: The E-ferry Concept. Transportation Research Procedia, 14, 1571–1580. https://doi.org/10.1016/j.trpro.2016.05.122
13. Gullbring, J., & Pandic, A. (2021). Electrification of short sea shipping in Scandinavia.
14. Kaplan, Y. A. (2017). Determination of the best Weibull methods for wind power assessment in the southern region of Turkey. IET Renewable Power Generation, 11(1), 175–182. https://doi.org/10.1049/iet-rpg.2016.0206
15. Katinas, V., Gecevicius, G., & Marciukaitis, M. (2018). An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Applied Energy, 218(December 2017), 442–451. https://doi.org/10.1016/j.apenergy.2018.02.163
16. Kazimierczuk, A. H. (2019). Wind energy in Kenya: A status and policy framework review. In Renewable and Sustainable Energy Reviews (Vol. 107, Issue November 2018, pp. 434–445). Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.12.061
17. Kengne Signe, E. B., Kanmogne, A., Emmanuel, G. D., & Meva’a, L. (2019). Comparison of seven numerical methods for determining Weibull parameters of wind for sustainable energy in Douala, Cameroon. International Journal of Energy Sector Management, 13(4), 903–915. https://doi.org/10.1108/IJESM-07-2018-0014
18. Kibona, T. E. (2020). Application of WRF mesoscale model for prediction of wind energy resources in Tanzania. Scientific African, 7, e00302. https://doi.org/10.1016/j.sciaf.2020.e00302
19. Kidmo, D. K., Deli, K., Raidandi, D., & Yamigno, S. D. (2016). Wind Energy for Electricity Generation in the Far North Region of Cameroon. Energy Procedia, 93(March), 66–73. https://doi.org/10.1016/j.egypro.2016.07.151
20. Kim, T. K., Yaakob, O., Bahru, J., Centre, M. T., & Bahru, J. (2016). A DAPTATION OF W IND P OWER FOR S HIP. 1(January 2013), 8–19.
21. Lee, J. K., Yook, D., Lee, K. J., Yun, J. Il, & Beeley, P. A. (2015). Weibull parameter calculation and estimation of directional and seasonal wind speeds for the return period: A case study in the Barakah NPP area. Annals of Nuclear Energy, 80, 62–69. https://doi.org/10.1016/j.anucene.2015.01.030
22. Li, B., Zhang, R., Li, Y., Zhang, B., & Guo, C. (2021). STUDY OF A NEW TYPE OF FLETTNER ROTOR. 28(109), 28–41.
23. Lu, R., & Ringsberg, J. W. (2020). Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology. Ships and Offshore Structures, 15(3), 249–258. https://doi.org/10.1080/17445302.2019.1612544
24. Michael, E., Tjahjana, D. D. D. P., & Prabowo, A. R. (2021). Estimating the potential of wind energy resources using Weibull parameters: A case study of the coastline region of Dar es Salaam, Tanzania. Open Engineering, 11(1), 1093–1104. https://doi.org/10.1515/eng-2021-0108
25. Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322–335. https://doi.org/10.1016/j.enconman.2015.11.015
26. Möllerström, E., Gipe, P., Beurskens, J., & Ottermo, F. (2019). A historical review of vertical axis wind turbines rated 100 kW and above. In Renewable and Sustainable Energy Reviews (Vol. 105, pp. 1–13). Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.12.022
27. Nadarajan, S., Ieee, M., Gupta, A. K., Ieee, S. M., Panda, S. K., & Ieee, S. M. (2016). Review of Smart Grid Requirements and Design Standards for Future Naval Vessels. 338–343.
28. Ongaki, N. L., Maghanga, C. M., & Kerongo, J. (2021). Evaluation of the Technical Wind Energy Potential of Kisii Region Based on the Weibull and Rayleigh Distribution Models. Journal of Energy, 2021, 1–17. https://doi.org/10.1155/2021/6627509
29. Ouahabi, M. H., Elkhachine, H., Benabdelouahab, F., & Khamlichi, A. (2020). Comparative study of five different methods of adjustment by the Weibull model to determine the most accurate method of analyzing annual variations of wind energy in Tetouan - Morocco. Procedia Manufacturing, 46(2019), 698–707. https://doi.org/10.1016/j.promfg.2020.03.099
30. Ouchi, K., Uzawa, K., Kanai, A., & Katori, M. (2013). “ Wind Challenger ” the Next Generation Hybrid Sailing Vessel. May, 562–567.
31. Pan, P., Sun, Y., Yuan, C., Yan, X., & Tang, X. (2021). Research progress on ship power systems integrated with new energy sources : A review. Renewable and Sustainable Energy Reviews, 144(March), 111048. https://doi.org/10.1016/j.rser.2021.111048
32. Rutkowski, G. (2017). Study of Green Shipping Technologies - Harnessing Wind, Waves and Solar Power in New Generation Marine Propulsion Systems. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 10(4), 627–632. https://doi.org/10.12716/1001.10.04.12
33. Sciberras, E. A., Zahawi, B., & Atkinson, D. J. (2017). Reducing shipboard emissions – Assessment of the role of electrical technologies. Transportation Research Part D: Transport and Environment, 51, 227–239. https://doi.org/10.1016/j.trd.2016.10.026
34. Soulouknga, M. H., Doka, S. Y., N.Revanna, N.Djongyang, & T.C.Kofane. (2018). Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renewable Energy, 121, 1–8. https://doi.org/10.1016/j.renene.2018.01.002
35. Sciberras, E. A., Zahawi, B., Atkinson, D. J., Breijs, A., & Van Vugt, J. H. (2016). Managing shipboard energy: A stochastic approach special issue on marine systems electrification. IEEE Transactions on Transportation Electrification, 2(4), 538–546. https://doi.org/10.1109/TTE.2016.2587682
36. Tay, Z. Y., & Konovessis, D. (2023). Sustainable energy propulsion system for sea transport to achieve United Nations sustainable development goals: a review. In Discover Sustainability (Vol. 4, Issue 1). Springer International Publishing. https://doi.org/10.1007/s43621-023-00132-y
37. Tiam Kapen, P., Jeutho Gouajio, M., & Yemélé, D. (2020). Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon. Renewable Energy, 159, 1188–1198. https://doi.org/10.1016/j.renene.2020.05.185
38. Yiğit, K., & Acarkan, B. (2018). A new ship energy management algorithm to the smart electricity grid system. International Journal of Energy Research, 42(8), 2741–2756. https://doi.org/10.1002/er.4062
39. Yongo, E. O., Manyala, J. O., Kito, K., Matsushita, Y., Outa, N. O., & Njiru, J. M. (2016). Diet of Silver Cyprinid, Rastrineobola argentea in Lake Victoria, Kenya. E. International Journal of Advanced Research, 4(6), 625–634. https://doi.org/10.21474/IJAR01
40. Yuan, Y., Wang, J., Yan, X., Shen, B., & Long, T. (2020). A review of multi-energy hybrid power system for ships. In Renewable and Sustainable

Authors

Titus Laurent Longino
Dr. Wilfred Jonson Kileo
Enock Michael Kandimba
Eng. Paul Theophily Nsulangi
[1]
“Different Heights Monthly and Yearly Mean Wind Speeds Investigation Using a Weibull Model: A Case of Short Ferry Route”, Soc. sci. humanities j., vol. 8, no. 09, Sep. 2024, doi: 10.18535/sshj.v8i09.1329.