Optimization Bread Distribution Scheduling To Minimize Repeated Distribution
Abstract
This The bread industry has seen advancements in distribution, making bread products easier to transport. With the implementation of delivery orders and effective picking processes, the bread industry can streamline the shipping process and make it easier for customers to obtain bread products. To address inefficiencies in distribution, companies can manage data related to bread, orders, and sales. In this context, Toko Roti XYZ, which has three branches (Branch A, Branch B, and Branch C), faces challenges in the distribution process. The unpredictability of bread demand at these branches is a major cause of repetitive distribution. Forecasting bread demand from these branches was performed using fuzzy time series, moving average, and exponential smoothing methods to determine the quantity of products to be distributed. Subsequently, distribution optimization was carried out using the Vehicle Routing Problem (VRP) method to achieve an optimal delivery schedule that affects distribution costs with a minimum result. The forecasting results with the smallest Mean Absolute Percentage Error (MAPE) were obtained using the moving average method, with an error of 23% for large bread and 9% for small bread from Branch A, an error of 17% for large bread and 14% for small bread from Branch B, and an error of 22% for large bread and 14% for small bread from Branch C. In the VRP method, number 1 represents the depot/production place, number 2 represents Branch A, number 3 represents Branch B, and number 4 represents Branch C. The scheduling routes obtained were 1-3-2-1 and 1-4-1, with a maximum of two distributions for the two available vehicles. With these optimizations, Toko Roti XYZ was able to save distribution costs by Rp. 35,492 and reduce distribution time by 116 minutes per day compared to the previous condition. Additionally, the optimization allowed Toko Roti XYZ to reduce total carbon emissions by 5,342 kg CO₂ per year.
References
[2] C. Kai, F. Fang-Ping and C. Wen-Gang, "Notice of Retraction: A Novel Forecasting Model of Fuzzy Time Series Based on K-means Clustering," 2010. Second International Workshop on Education Technology and Computer Science, Wuhan, China, 2010, pp. 223-225,
doi: 10.1109/ETCS.2010.249.
[3] Alpaslan, F., Cagcag, O., Aladag, C. H., Yolcu, U. F. U. K., & Egrioglu, E., 2012. A novel seasonal fuzzy time series method. Journal of Mathematics and Statistics, 41(3), 375-385.
[4] R. R. Yager, "Time Series Smoothing and OWA Aggregation," in IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 994-1007, Aug. 2008, doi: 10.1109/TFUZZ.2008.917299.
[5] Khedkar, P. S., & Keshav, S, 1992 . Fuzzy prediction of time series. In [1992 Proceedings] IEEE International Conference on Fuzzy Systems (pp. 281-288). IEEE.
[6] Putri, A. M., Ardiansyah, M. N., & Chulasoh, B. S.,2023. Perancangan Rute Pengiriman pada PT. ABC untuk Meminimasi Tingkat Keterlambatan Pengiriman dan Biaya Transportasi Menggunakan Model Mixed Integer Linear Programming. Jurnal Teknik Industri Terintegrasi (JUTIN), 6(4), 1387–1395,
doi: 10.31004/jutin.v6i4.21022
[7] Liong Choong Yeun, Wan Rosmanira Ismail, Khairuddin Omar & Mourad Zirour, 2008. Vehicle Routing Problem: Models and Solutions. Journal of Quality Measurement and Analysis JQMA, 4(1), 205–218.
[8] Ichsan, M., 2022. Aplikasi Peramalan Penjualan Menggunakan Metode Triple Exponential Smoothing Pada CV Gaharu. Com Berbasis Android. Universitas Islam Negeri Sumatera Utara.
[9] Satria, W. , 2021. Jaringan Syaraf Tiruan Backpropagation Untuk Peramalan Penjualan Produk (Studi Kasus Di Metro Electronic Dan Furniture). Djtechno: Jurnal Teknologi Informasi, 1(1), 14–19. https://doi.org/10.46576/djtechno.v1i1.966
[10] Chen, S. M., 2002. Forecasting enrollments based on high-order fuzzy time series. In Cybernetics and Systems 33 (1). Fuzzy Sets and Systems.
https://doi.org/10.1080/019697202753306479
[11] Sahulata, E. R. Y., Wattimanela, H. J., & Noya Van Delsen, M. S., 2020. Penerapan Fuzzy Inference System Tipe Mamdani Untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Jumlah Permintaan Dan Persediaan (Studi Kasus Pabrik Cinderela Bread House Di Kota Ambon). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1),079–090. https://doi.org/10.30598/barekengvol14iss1pp079-090
[12] Inayati, S., Yuliana, Y., & Hanafiah, A. , 2021. Prediksi Jumlah Peserta BPJS Penerima Bantuan Iuran (PBI) APBN menggunakan Metode Fuzzy Time Series Barekeng: Jurnal Ilmu Matematika Dan Terapan, 15(2), 373–384,
https://doi.org/10.30598/barekengvol15iss2pp373-384.
[13] Sirendeng, H. D., 2023. Prediksi Harga Saham Dengan Menggunakan Metode Weighted Moving Average Pada Saham Blue Chip (LQ45) Industri Perbankan Di Bursa Efek Indonesia:. Jurnal LPPM Bidang EkoSosBudKum (Ekonomi, Sosial, Budaya, Dan Hukum), 7(2), 71–82.
[14] Ihsan, H., Syam, R., & Ahmad, F., 2018. Peramalan Penjualan dengan Metode Exponential Smoothing (Studi Kasus: Penjualan Bakso Kemasaan/Kiloan Rumah Bakso Bang Ipul). Journal of Mathematics, Computations, and Statistics,1(1),1–7, https://dx.doi.org/10.35580/jmathcos.v1i1.9168.
[15] Arvianto, A., Nartadhi, R. L., Sari, D. P., & Budiawan, W. , 2018. Penerapan Simulasi Dan Reliabilitas Pada Model Vehicle Routing Problem (VRP) Dengan Permintaan Probabilistik. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 189–204,
https://doi.org/10.24176/simet.v9i1.